arXiv:2007.07802 [math.CO]AbstractReferencesReviewsResources
Permutree sorting
Vincent Pilaud, Viviane Pons, Daniel Tamayo Jiménez
Published 2020-07-15Version 1
Generalizing stack sorting and $c$-sorting for permutations, we define the permutree sorting algorithm. Given two disjoint subsets $U$ and $D$ of $\{2, \dots, n-1\}$, the $(U,D)$-permutree sorting tries to sort the permutation $\pi \in \mathfrak{S}_n$ and fails if and only if there are $1 \le i < j < k \le n$ such that $\pi$ contains the subword $jki$ if $j \in U$ and $kij$ if $j \in D$. This algorithm is seen as a way to explore an automaton which either rejects all reduced expressions of $\pi$, or accepts those reduced expressions for $\pi$ whose prefixes are all $(U,D)$-permutree sortable.
Comments: 18 pages, 5 figures
Related articles: Most relevant | Search more
arXiv:0806.2787 [math.CO] (Published 2008-06-17)
Sorting a Permutation by block moves
Young classes of permutations
The number of bar{3}bar{1}542-avoiding permutations