{ "id": "2007.07802", "version": "v1", "published": "2020-07-15T16:23:31.000Z", "updated": "2020-07-15T16:23:31.000Z", "title": "Permutree sorting", "authors": [ "Vincent Pilaud", "Viviane Pons", "Daniel Tamayo Jiménez" ], "comment": "18 pages, 5 figures", "categories": [ "math.CO", "cs.DS" ], "abstract": "Generalizing stack sorting and $c$-sorting for permutations, we define the permutree sorting algorithm. Given two disjoint subsets $U$ and $D$ of $\\{2, \\dots, n-1\\}$, the $(U,D)$-permutree sorting tries to sort the permutation $\\pi \\in \\mathfrak{S}_n$ and fails if and only if there are $1 \\le i < j < k \\le n$ such that $\\pi$ contains the subword $jki$ if $j \\in U$ and $kij$ if $j \\in D$. This algorithm is seen as a way to explore an automaton which either rejects all reduced expressions of $\\pi$, or accepts those reduced expressions for $\\pi$ whose prefixes are all $(U,D)$-permutree sortable.", "revisions": [ { "version": "v1", "updated": "2020-07-15T16:23:31.000Z" } ], "analyses": { "subjects": [ "68P10", "68Q45", "68R05", "05E99" ], "keywords": [ "reduced expressions", "permutree sorting algorithm", "disjoint subsets", "permutree sorting tries", "permutation" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }