arXiv Analytics

Sign in

arXiv:2007.05582 [math.FA]AbstractReferencesReviewsResources

Mean Ergodicity of Multiplication Operators on the Bloch and Besov Spaces

F. Falahat, Z. Kamali

Published 2020-07-10Version 1

In this paper, the power boundedness and mean ergodicity of multiplication operators are investigated on the Bloch space $\mathcal{B}$, the little Bloch space $\mathcal{B }_0 $ and the Besov Space $\mathcal{B}_p$. Let $\mathbb{U}$ be the unit disk on the complex plane $\mathbb{C}$ and $\psi$ be a function on the space of holomorphic functions $H(\mathbb{U})$, our goal is to find out when the multiplication operator $M_{ \psi}$ is power bounded, mean ergodic and uniformly mean ergodic on $\mathcal{B}$, $\mathcal{B }_0 $ and $\mathcal{B}_p$.

Related articles: Most relevant | Search more
arXiv:1411.1018 [math.FA] (Published 2014-11-04)
Properties of Multiplication Operators on Köthe spaces
arXiv:1104.2806 [math.FA] (Published 2011-04-14)
Multiplication operators on vector-valued function spaces
arXiv:1901.07781 [math.FA] (Published 2019-01-23)
Weighted Composition Groups on the Little Bloch space