{ "id": "2007.05582", "version": "v1", "published": "2020-07-10T19:39:57.000Z", "updated": "2020-07-10T19:39:57.000Z", "title": "Mean Ergodicity of Multiplication Operators on the Bloch and Besov Spaces", "authors": [ "F. Falahat", "Z. Kamali" ], "comment": "14 pages", "categories": [ "math.FA", "math.DS" ], "abstract": "In this paper, the power boundedness and mean ergodicity of multiplication operators are investigated on the Bloch space $\\mathcal{B}$, the little Bloch space $\\mathcal{B }_0 $ and the Besov Space $\\mathcal{B}_p$. Let $\\mathbb{U}$ be the unit disk on the complex plane $\\mathbb{C}$ and $\\psi$ be a function on the space of holomorphic functions $H(\\mathbb{U})$, our goal is to find out when the multiplication operator $M_{ \\psi}$ is power bounded, mean ergodic and uniformly mean ergodic on $\\mathcal{B}$, $\\mathcal{B }_0 $ and $\\mathcal{B}_p$.", "revisions": [ { "version": "v1", "updated": "2020-07-10T19:39:57.000Z" } ], "analyses": { "subjects": [ "47B38", "46E15", "47A35" ], "keywords": [ "multiplication operator", "mean ergodicity", "besov space", "little bloch space", "uniformly mean ergodic" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }