arXiv Analytics

Sign in

arXiv:2007.03489 [math.AG]AbstractReferencesReviewsResources

Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms

Jan-Willem van Ittersum, Georg Oberdieck, Aaron Pixton

Published 2020-07-07Version 1

We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko--Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter. The results yield an explicit conjectural description for all double ramification cycle integrals in the Gromov--Witten theory of K3 surfaces.

Related articles: Most relevant | Search more
arXiv:math/0605708 [math.AG] (Published 2006-05-29)
Invariance of tautological equations II: Gromov--Witten theory
arXiv:1505.02964 [math.AG] (Published 2015-05-12)
Gromov-Witten theory and Brane actions I : categorification and K-theory
arXiv:1309.1150 [math.AG] (Published 2013-09-04)
Geometric Quantization with Applications to Gromov-Witten Theory