{ "id": "2007.03489", "version": "v1", "published": "2020-07-07T14:24:03.000Z", "updated": "2020-07-07T14:24:03.000Z", "title": "Gromov-Witten theory of K3 surfaces and a Kaneko-Zagier equation for Jacobi forms", "authors": [ "Jan-Willem van Ittersum", "Georg Oberdieck", "Aaron Pixton" ], "comment": "30 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko--Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter. The results yield an explicit conjectural description for all double ramification cycle integrals in the Gromov--Witten theory of K3 surfaces.", "revisions": [ { "version": "v1", "updated": "2020-07-07T14:24:03.000Z" } ], "analyses": { "keywords": [ "gromov-witten theory", "k3 surfaces", "jacobi forms", "kaneko-zagier equation", "kaneko-zagier differential equation" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }