arXiv Analytics

Sign in

arXiv:2006.02877 [math.CO]AbstractReferencesReviewsResources

A subexponential upper bound for van der Waerden numbers W(3,k)

Tomasz Schoen

Published 2020-06-04Version 1

We show an improved upper estimate for van der Waerden number $W(3,k):$ there is an absolute constant $c>0$ such that if $\{1,\dots,N\}=X\cup Y$ is a partition such that $X$ does not contain any arithmetic progression of length $3$ and $Y$ does not contain any arithmetic progression of length $k$ then $$N\le \exp(O(k^{1-c}))\,.$$

Related articles: Most relevant | Search more
arXiv:2308.16647 [math.CO] (Published 2023-08-31)
On size Ramsey numbers for a pair of cycles
arXiv:math/0506351 [math.CO] (Published 2005-06-17)
On Monochromatic Ascending Waves
arXiv:1508.07912 [math.CO] (Published 2015-08-31)
Cycle lengths and minimum degree of graphs