{ "id": "2006.02877", "version": "v1", "published": "2020-06-04T14:19:54.000Z", "updated": "2020-06-04T14:19:54.000Z", "title": "A subexponential upper bound for van der Waerden numbers W(3,k)", "authors": [ "Tomasz Schoen" ], "categories": [ "math.CO", "math.NT" ], "abstract": "We show an improved upper estimate for van der Waerden number $W(3,k):$ there is an absolute constant $c>0$ such that if $\\{1,\\dots,N\\}=X\\cup Y$ is a partition such that $X$ does not contain any arithmetic progression of length $3$ and $Y$ does not contain any arithmetic progression of length $k$ then $$N\\le \\exp(O(k^{1-c}))\\,.$$", "revisions": [ { "version": "v1", "updated": "2020-06-04T14:19:54.000Z" } ], "analyses": { "subjects": [ "05D10", "11B25" ], "keywords": [ "van der waerden number", "subexponential upper bound", "arithmetic progression", "absolute constant", "upper estimate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }