arXiv:2005.14466 [math.NT]AbstractReferencesReviewsResources
Proof of a q-supercongruence conjectured by Guo and Schlosser
Published 2020-05-29Version 1
In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer $n>1$ and $M=(n+1)/2$ or $n-1$, $$ \sum_{k=0}^{M}[4k-1]_{q^2}[4k-1]^2\frac{(q^{-2};q^4)_k^4}{(q^4;q^4)_k^4}q^{4k}\equiv (2q+2q^{-1}-1)[n]_{q^2}^4\pmod{[n]_{q^2}^4\Phi_n(q^2)}, $$ where $[n]=[n]_q=(1-q^n)/(1-q),(a;q)_0=1,(a;q)_k=(1-a)(1-aq)\cdots(1-aq^{k-1})$ for $k\geq 1$ and $\Phi_n(q)$ denotes the $n$-th cyclotomic polynomial.
Categories: math.NT
Related articles: Most relevant | Search more
Proof of three conjectures on congruences
On a conjecture of Kimoto and Wakayama
On a conjecture of Deligne