arXiv Analytics

Sign in

arXiv:2005.14466 [math.NT]AbstractReferencesReviewsResources

Proof of a q-supercongruence conjectured by Guo and Schlosser

Long Li, Su-Dan Wang

Published 2020-05-29Version 1

In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer $n>1$ and $M=(n+1)/2$ or $n-1$, $$ \sum_{k=0}^{M}[4k-1]_{q^2}[4k-1]^2\frac{(q^{-2};q^4)_k^4}{(q^4;q^4)_k^4}q^{4k}\equiv (2q+2q^{-1}-1)[n]_{q^2}^4\pmod{[n]_{q^2}^4\Phi_n(q^2)}, $$ where $[n]=[n]_q=(1-q^n)/(1-q),(a;q)_0=1,(a;q)_k=(1-a)(1-aq)\cdots(1-aq^{k-1})$ for $k\geq 1$ and $\Phi_n(q)$ denotes the $n$-th cyclotomic polynomial.

Related articles: Most relevant | Search more
arXiv:1010.2489 [math.NT] (Published 2010-10-12, updated 2014-08-07)
Proof of three conjectures on congruences
arXiv:1404.4723 [math.NT] (Published 2014-04-18, updated 2016-03-16)
On a conjecture of Kimoto and Wakayama
arXiv:1007.4004 [math.NT] (Published 2010-07-22, updated 2018-03-01)
On a conjecture of Deligne