{ "id": "2005.14466", "version": "v1", "published": "2020-05-29T09:27:13.000Z", "updated": "2020-05-29T09:27:13.000Z", "title": "Proof of a q-supercongruence conjectured by Guo and Schlosser", "authors": [ "Long Li", "Su-Dan Wang" ], "categories": [ "math.NT" ], "abstract": "In this paper, we confirm the following conjecture of Guo and Schlosser: for any odd integer $n>1$ and $M=(n+1)/2$ or $n-1$, $$ \\sum_{k=0}^{M}[4k-1]_{q^2}[4k-1]^2\\frac{(q^{-2};q^4)_k^4}{(q^4;q^4)_k^4}q^{4k}\\equiv (2q+2q^{-1}-1)[n]_{q^2}^4\\pmod{[n]_{q^2}^4\\Phi_n(q^2)}, $$ where $[n]=[n]_q=(1-q^n)/(1-q),(a;q)_0=1,(a;q)_k=(1-a)(1-aq)\\cdots(1-aq^{k-1})$ for $k\\geq 1$ and $\\Phi_n(q)$ denotes the $n$-th cyclotomic polynomial.", "revisions": [ { "version": "v1", "updated": "2020-05-29T09:27:13.000Z" } ], "analyses": { "keywords": [ "q-supercongruence", "th cyclotomic polynomial", "odd integer", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }