arXiv:2005.08909 [math.FA]AbstractReferencesReviewsResources
An $H^p$ scale for complete Pick spaces
Alexandru Aleman, Michael Hartz, John E. McCarthy, Stefan Richter
Published 2020-05-18Version 1
We define by interpolation a scale analogous to the Hardy $H^p$ scale for complete Pick spaces, and establish some of the basic properties of the resulting spaces, which we call $\mathcal{H}^p$. In particular, we obtain an $\mathcal{H}^p-\mathcal{H}^q$ duality and establish sharp pointwise estimates for functions in $\mathcal{H}^p$.
Subjects: 46E22
Related articles: Most relevant | Search more
arXiv:2306.13602 [math.FA] (Published 2023-06-23)
Simply interpolating sequences in complete Pick spaces
arXiv:2108.04383 [math.FA] (Published 2021-08-09)
Unbounded multipliers of complete Pick spaces
arXiv:2203.08179 [math.FA] (Published 2022-03-15)
Free outer functions in complete Pick spaces