{ "id": "2005.08909", "version": "v1", "published": "2020-05-18T17:30:55.000Z", "updated": "2020-05-18T17:30:55.000Z", "title": "An $H^p$ scale for complete Pick spaces", "authors": [ "Alexandru Aleman", "Michael Hartz", "John E. McCarthy", "Stefan Richter" ], "categories": [ "math.FA", "math.CV" ], "abstract": "We define by interpolation a scale analogous to the Hardy $H^p$ scale for complete Pick spaces, and establish some of the basic properties of the resulting spaces, which we call $\\mathcal{H}^p$. In particular, we obtain an $\\mathcal{H}^p-\\mathcal{H}^q$ duality and establish sharp pointwise estimates for functions in $\\mathcal{H}^p$.", "revisions": [ { "version": "v1", "updated": "2020-05-18T17:30:55.000Z" } ], "analyses": { "subjects": [ "46E22" ], "keywords": [ "complete pick spaces", "establish sharp pointwise estimates", "basic properties", "interpolation", "resulting spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }