arXiv:2005.05494 [math.CO]AbstractReferencesReviewsResources
Maximal sets of $k$-spaces pairwise intersecting in at least a $(k-2)$-space
Jozefien D'haeseleer, Giovanni Longobardi, Ago-Erik Riet, Leo Storme
Published 2020-05-12Version 1
In this paper, we analyze the structure of maximal sets of $k$-dimensional spaces in $\mathrm{PG}(n,q)$ pairwise intersecting in at least a $(k-2)$-dimensional space, for $3 \leq k\leq n-2$. We give an overview of the largest examples of these sets with size more than $f(k,q)=\max\{3q^4+6q^3+5q^2+q+1,\theta_{k+1}+q^4+2q^3+3q^2\}$.
Categories: math.CO
Related articles: Most relevant | Search more
Maximal sets with no solution to x+y=3z
arXiv:2409.00846 [math.CO] (Published 2024-09-01)
Undecidability of Translational Tiling of the 4-dimensional Space with a Set of 4 Polyhypercubes
arXiv:2009.03475 [math.CO] (Published 2020-09-08)
Maximal sets of mutually orthogonal frequency squares