{ "id": "2005.05494", "version": "v1", "published": "2020-05-12T00:44:52.000Z", "updated": "2020-05-12T00:44:52.000Z", "title": "Maximal sets of $k$-spaces pairwise intersecting in at least a $(k-2)$-space", "authors": [ "Jozefien D'haeseleer", "Giovanni Longobardi", "Ago-Erik Riet", "Leo Storme" ], "categories": [ "math.CO" ], "abstract": "In this paper, we analyze the structure of maximal sets of $k$-dimensional spaces in $\\mathrm{PG}(n,q)$ pairwise intersecting in at least a $(k-2)$-dimensional space, for $3 \\leq k\\leq n-2$. We give an overview of the largest examples of these sets with size more than $f(k,q)=\\max\\{3q^4+6q^3+5q^2+q+1,\\theta_{k+1}+q^4+2q^3+3q^2\\}$.", "revisions": [ { "version": "v1", "updated": "2020-05-12T00:44:52.000Z" } ], "analyses": { "keywords": [ "maximal sets", "spaces pairwise intersecting", "dimensional space", "largest examples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }