arXiv Analytics

Sign in

arXiv:2005.01272 [math.NT]AbstractReferencesReviewsResources

Variations of Andrews-Beck type congruences

Song Heng Chan, Renrong Mao, Robert Osburn

Published 2020-05-04Version 1

We prove three variations of recent results due to Andrews on congruences for $NT(m,k,n)$, the total number of parts in the partitions of $n$ with rank congruent to $m$ modulo $k$. We also conjecture new congruences and relations for $NT(m,k,n)$ and for a related crank-type function.

Related articles: Most relevant | Search more
arXiv:2006.02335 [math.NT] (Published 2020-06-03)
Beck-type identities for Euler pairs of order $r$
arXiv:2004.10526 [math.NT] (Published 2020-04-20)
Some variations of a "divergent" Ramanujan-type $q$-supercongruence
arXiv:2306.13309 [math.NT] (Published 2023-06-23)
Partitions with parts separated by parity: conjugation, congruences and the mock theta functions