{ "id": "2005.01272", "version": "v1", "published": "2020-05-04T04:57:40.000Z", "updated": "2020-05-04T04:57:40.000Z", "title": "Variations of Andrews-Beck type congruences", "authors": [ "Song Heng Chan", "Renrong Mao", "Robert Osburn" ], "comment": "15 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We prove three variations of recent results due to Andrews on congruences for $NT(m,k,n)$, the total number of parts in the partitions of $n$ with rank congruent to $m$ modulo $k$. We also conjecture new congruences and relations for $NT(m,k,n)$ and for a related crank-type function.", "revisions": [ { "version": "v1", "updated": "2020-05-04T04:57:40.000Z" } ], "analyses": { "subjects": [ "11P81", "05A17" ], "keywords": [ "andrews-beck type congruences", "variations", "total number", "rank congruent", "related crank-type function" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }