arXiv Analytics

Sign in

arXiv:2004.12751 [math.FA]AbstractReferencesReviewsResources

The complement of M(a) in H(b)

Maria Teresa Nowak Paweł Sobolewski Andrzej Sołtysiak

Published 2020-04-27Version 1

Let $b$ be a nonextreme function in the unit ball of $H^{\infty}$ on the unit disk $\mathbb{D} $ and let $a$ be an outer $H^{\infty}$ function such that $|a|^2+|b|^2=1$ almost everywhere on $\partial \mathbb{D}$. The sufficient and necessary conditions for the orthogonal complement of $\mathcal{M}(a)$ in $\mathcal{H}(b)$ be finite dimensional has been given by D. Sarason . Here we describe this space explicitly.

Related articles: Most relevant | Search more
arXiv:math/9911021 [math.FA] (Published 1999-11-03)
Slices in the unit ball of a uniform algebra
arXiv:math/9704216 [math.FA] (Published 1997-04-22)
Linear maps on factors which preserve the extreme points of the unit ball
arXiv:1311.2177 [math.FA] (Published 2013-11-09)
On duality of diameter 2 properties