{ "id": "2004.12751", "version": "v1", "published": "2020-04-27T12:51:17.000Z", "updated": "2020-04-27T12:51:17.000Z", "title": "The complement of M(a) in H(b)", "authors": [ "Maria Teresa Nowak Paweł Sobolewski Andrzej Sołtysiak" ], "categories": [ "math.FA" ], "abstract": "Let $b$ be a nonextreme function in the unit ball of $H^{\\infty}$ on the unit disk $\\mathbb{D} $ and let $a$ be an outer $H^{\\infty}$ function such that $|a|^2+|b|^2=1$ almost everywhere on $\\partial \\mathbb{D}$. The sufficient and necessary conditions for the orthogonal complement of $\\mathcal{M}(a)$ in $\\mathcal{H}(b)$ be finite dimensional has been given by D. Sarason . Here we describe this space explicitly.", "revisions": [ { "version": "v1", "updated": "2020-04-27T12:51:17.000Z" } ], "analyses": { "subjects": [ "46E22", "47B32", "30H05" ], "keywords": [ "nonextreme function", "unit ball", "unit disk", "necessary conditions", "orthogonal complement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }