arXiv Analytics

Sign in

arXiv:2003.14221 [math.NT]AbstractReferencesReviewsResources

On a supercongruence conjecture of Z.-W. Sun

Guo-Shuai Mao

Published 2020-03-30Version 1

In this paper, we prove a supercongruence conjectured by Z.-W. Sun in 2013. The conjecture states that: Let $p$ be an odd prime and let $a\in\mathbb{Z}^{+}$. Then if $p\equiv1\pmod3$ or $a>1$, we have \begin{align*} \sum_{k=0}^{\lfloor\frac{5}6p^a\rfloor}\frac{\binom{2k}k}{16^k}\equiv\left(\frac{3}{p^a}\right)\pmod{p^2}, \end{align*} where $\left(\frac{\cdot}{\cdot}\right)$ is the Jacobi symbol.

Comments: 10 pages. arXiv admin note: text overlap with arXiv:2003.09810
Categories: math.NT, math.CO
Related articles: Most relevant | Search more
arXiv:1405.7294 [math.NT] (Published 2014-05-28)
A converse to a theorem of Gross, Zagier, and Kolyvagin
arXiv:1307.1840 [math.NT] (Published 2013-07-07)
Primality test for numbers of the form $(2p)^{2^n}+1$
arXiv:1012.3919 [math.NT] (Published 2010-12-17)
Constructing $x^2$ for primes $p=ax^2+by^2$