{ "id": "2003.14221", "version": "v1", "published": "2020-03-30T08:57:43.000Z", "updated": "2020-03-30T08:57:43.000Z", "title": "On a supercongruence conjecture of Z.-W. Sun", "authors": [ "Guo-Shuai Mao" ], "comment": "10 pages. arXiv admin note: text overlap with arXiv:2003.09810", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we prove a supercongruence conjectured by Z.-W. Sun in 2013. The conjecture states that: Let $p$ be an odd prime and let $a\\in\\mathbb{Z}^{+}$. Then if $p\\equiv1\\pmod3$ or $a>1$, we have \\begin{align*} \\sum_{k=0}^{\\lfloor\\frac{5}6p^a\\rfloor}\\frac{\\binom{2k}k}{16^k}\\equiv\\left(\\frac{3}{p^a}\\right)\\pmod{p^2}, \\end{align*} where $\\left(\\frac{\\cdot}{\\cdot}\\right)$ is the Jacobi symbol.", "revisions": [ { "version": "v1", "updated": "2020-03-30T08:57:43.000Z" } ], "analyses": { "keywords": [ "supercongruence conjecture", "conjecture states", "odd prime" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }