arXiv:2003.12014 [math.GN]AbstractReferencesReviewsResources
Coarse spaces, ultrafilters and dynamical systems
Published 2020-03-18Version 1
For a coarse space $(X, \mathcal{E})$, $X^\sharp$ denotes the set of all unbounded ultrafilters on $X$ endowed with the parallelity relation: $p||q$ if there exists $E \in \mathcal{E} $ such that $ E[P]\in q $ for each $P\in p$. If $(X, \mathcal{E})$ is finitary then there exists a group $G $ of permutations of $X$ such that the coarse structure $\mathcal{E}$ has the base $\{\{ (x,gx): x\in X$, $g\in F\}: F\in [G]^{<\omega}, \ id \in F \}.$ We survey and analyze interplays between $(X, \mathcal{E})$, $X^\sharp$ and the dynamical system $(G, X^\sharp)$.
Comments: Keywords: Coarse spaces, balleans, ultrafilters, dynamical systems
Categories: math.GN
Related articles: Most relevant | Search more
arXiv:2102.02053 [math.GN] (Published 2021-02-02)
Selectors and orderings of coarse spaces
Iterates of dynamical systems on compact metrizable countable spaces
arXiv:1902.02320 [math.GN] (Published 2019-02-06)
Coarse structures on groups defined by $T$-sequences