{ "id": "2003.12014", "version": "v1", "published": "2020-03-18T10:07:49.000Z", "updated": "2020-03-18T10:07:49.000Z", "title": "Coarse spaces, ultrafilters and dynamical systems", "authors": [ "Igor Protasov" ], "comment": "Keywords: Coarse spaces, balleans, ultrafilters, dynamical systems", "categories": [ "math.GN" ], "abstract": "For a coarse space $(X, \\mathcal{E})$, $X^\\sharp$ denotes the set of all unbounded ultrafilters on $X$ endowed with the parallelity relation: $p||q$ if there exists $E \\in \\mathcal{E} $ such that $ E[P]\\in q $ for each $P\\in p$. If $(X, \\mathcal{E})$ is finitary then there exists a group $G $ of permutations of $X$ such that the coarse structure $\\mathcal{E}$ has the base $\\{\\{ (x,gx): x\\in X$, $g\\in F\\}: F\\in [G]^{<\\omega}, \\ id \\in F \\}.$ We survey and analyze interplays between $(X, \\mathcal{E})$, $X^\\sharp$ and the dynamical system $(G, X^\\sharp)$.", "revisions": [ { "version": "v1", "updated": "2020-03-18T10:07:49.000Z" } ], "analyses": { "keywords": [ "coarse space", "dynamical system", "parallelity relation", "coarse structure", "analyze interplays" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }