arXiv Analytics

Sign in

arXiv:2003.11863 [math.AP]AbstractReferencesReviewsResources

Existence of solution for a class of nonlocal problem via dynamical methods

Claudianor O. Alves, Tahir Boudjeriou

Published 2020-03-26Version 1

In this paper we use the dynamical methods to establish the existence of nontrivial solution for a class of nonlocal problem of the type $$ \left\{\begin{array}{l} -a\left(x,\int_{\Omega}g(u)\,dx \right)\Delta u =f(u), \quad x \in \Omega \\ u=0, \hspace{2 cm} x \in \partial \Omega, \end{array}\right. \leqno{(P)} $$ where $\Omega \subset \mathbb{R}^N \, ( N \geq 2)$ is a smooth bounded domain and $a:\overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ and $g,f: \mathbb{R} \to \mathbb{R}$ are $C^1$-functions that satisfy some technical conditions.

Related articles: Most relevant | Search more
arXiv:1509.05294 [math.AP] (Published 2015-09-17)
Existence of solution for a nonlocal problem in $\R^N$ via bifurcation theory
arXiv:1804.10699 [math.AP] (Published 2018-04-27)
Three solutions for a nonlocal problem with critical growth
arXiv:1404.2232 [math.AP] (Published 2014-04-08, updated 2014-06-13)
Existence of a nontrivial solution for a strongly indefinite periodic Schrodinger-Poisson system