{ "id": "2003.11863", "version": "v1", "published": "2020-03-26T12:30:57.000Z", "updated": "2020-03-26T12:30:57.000Z", "title": "Existence of solution for a class of nonlocal problem via dynamical methods", "authors": [ "Claudianor O. Alves", "Tahir Boudjeriou" ], "categories": [ "math.AP" ], "abstract": "In this paper we use the dynamical methods to establish the existence of nontrivial solution for a class of nonlocal problem of the type $$ \\left\\{\\begin{array}{l} -a\\left(x,\\int_{\\Omega}g(u)\\,dx \\right)\\Delta u =f(u), \\quad x \\in \\Omega \\\\ u=0, \\hspace{2 cm} x \\in \\partial \\Omega, \\end{array}\\right. \\leqno{(P)} $$ where $\\Omega \\subset \\mathbb{R}^N \\, ( N \\geq 2)$ is a smooth bounded domain and $a:\\overline{\\Omega} \\times \\mathbb{R} \\to \\mathbb{R}$ and $g,f: \\mathbb{R} \\to \\mathbb{R}$ are $C^1$-functions that satisfy some technical conditions.", "revisions": [ { "version": "v1", "updated": "2020-03-26T12:30:57.000Z" } ], "analyses": { "keywords": [ "nonlocal problem", "dynamical methods", "nontrivial solution", "smooth bounded domain", "technical conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }