arXiv Analytics

Sign in

arXiv:2003.10956 [math.CO]AbstractReferencesReviewsResources

Equitable 2-partitions of Johnson graphs with the second eigenvalue

Konstantin Vorob'ev

Published 2020-03-24Version 1

We study equitable 2-partitions of the Johnson graphs J(n,w) with a quotient matrix containing the eigenvalue lambda_2(w,n) = (w-2)(n-w-2)-2 in its spectrum. For any w>=4 and n>=2w, we find all admissible quotient matrices of such partitions, and characterize all these partitions for w>=4, n>2w, and for w>=7, n = 2w, up to equivalence.

Comments: 16 pages
Categories: math.CO
Subjects: 05B30, 05E99
Related articles: Most relevant | Search more
arXiv:math/0508041 [math.CO] (Published 2005-08-01)
Enriched $P$-partitions and peak algebras
arXiv:math/0001082 [math.CO] (Published 2000-01-14)
Une identité remarquable en théorie des partitions
arXiv:1003.3329 [math.CO] (Published 2010-03-17, updated 2010-09-14)
Isometric embeddings of Johnson graphs in Grassmann graphs