{ "id": "2003.10956", "version": "v1", "published": "2020-03-24T16:31:42.000Z", "updated": "2020-03-24T16:31:42.000Z", "title": "Equitable 2-partitions of Johnson graphs with the second eigenvalue", "authors": [ "Konstantin Vorob'ev" ], "comment": "16 pages", "categories": [ "math.CO" ], "abstract": "We study equitable 2-partitions of the Johnson graphs J(n,w) with a quotient matrix containing the eigenvalue lambda_2(w,n) = (w-2)(n-w-2)-2 in its spectrum. For any w>=4 and n>=2w, we find all admissible quotient matrices of such partitions, and characterize all these partitions for w>=4, n>2w, and for w>=7, n = 2w, up to equivalence.", "revisions": [ { "version": "v1", "updated": "2020-03-24T16:31:42.000Z" } ], "analyses": { "subjects": [ "05B30", "05E99" ], "keywords": [ "johnson graphs", "second eigenvalue", "admissible quotient matrices", "partitions" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }