arXiv Analytics

Sign in

arXiv:2002.00358 [math.AG]AbstractReferencesReviewsResources

On the Moduli space of $λ$-connections

Anoop Singh

Published 2020-02-02Version 1

Let $X$ be a compact Riemann surface of genus $g \geq 3$. Let $\cat{M}_{Hod}$ denote the moduli space of stable $\lambda$-connections over $X $ and $\cat{M}'_{Hod} \subset \cat{M}_{Hod}$ denote the subvariety whose underlying vector bundle is stable. Fix a line bundle $L$ of degree zero. Let $\cat{M}_{Hod}(L)$ denote the moduli space of stable $\lambda$-connections with fixed determinant $L$ and $\cat{M}'_{Hod}(L) \subset \cat{M}_{Hod}(L)$ be the subvariety whose underlying vector bundle is stable. We show that there is a natural compactification of $\cat{M}'_{Hod}$ and $\cat{M}'_{Hod} (L)$, and study their Picard groups. Let $\M_{Hod}(L)$ denote the moduli space of polystable $\lambda$-connections. We investigate the nature of algebraic functions on $\cat{M}_{Hod}(L)$ and $\M_{Hod}(L)$. We also study the automorphism group of $\cat{M}'_{Hod}(L)$.

Comments: 12 pages
Categories: math.AG
Subjects: 14D20, 14C22, 14E05, 14J50
Related articles: Most relevant | Search more
arXiv:2203.06854 [math.AG] (Published 2022-03-14)
Line bundles on the moduli space of parabolic connections over a compact Riemann surface
arXiv:2102.03524 [math.AG] (Published 2021-02-06)
A note on the moduli spaces of holomorphic and logarithmic connections over a compact Riemann surface
arXiv:math/0702579 [math.AG] (Published 2007-02-20, updated 2008-09-05)
Torelli theorem for moduli spaces of SL(r,C)-connections on a compact Riemann surface