{ "id": "2002.00358", "version": "v1", "published": "2020-02-02T10:14:04.000Z", "updated": "2020-02-02T10:14:04.000Z", "title": "On the Moduli space of $λ$-connections", "authors": [ "Anoop Singh" ], "comment": "12 pages", "categories": [ "math.AG" ], "abstract": "Let $X$ be a compact Riemann surface of genus $g \\geq 3$. Let $\\cat{M}_{Hod}$ denote the moduli space of stable $\\lambda$-connections over $X $ and $\\cat{M}'_{Hod} \\subset \\cat{M}_{Hod}$ denote the subvariety whose underlying vector bundle is stable. Fix a line bundle $L$ of degree zero. Let $\\cat{M}_{Hod}(L)$ denote the moduli space of stable $\\lambda$-connections with fixed determinant $L$ and $\\cat{M}'_{Hod}(L) \\subset \\cat{M}_{Hod}(L)$ be the subvariety whose underlying vector bundle is stable. We show that there is a natural compactification of $\\cat{M}'_{Hod}$ and $\\cat{M}'_{Hod} (L)$, and study their Picard groups. Let $\\M_{Hod}(L)$ denote the moduli space of polystable $\\lambda$-connections. We investigate the nature of algebraic functions on $\\cat{M}_{Hod}(L)$ and $\\M_{Hod}(L)$. We also study the automorphism group of $\\cat{M}'_{Hod}(L)$.", "revisions": [ { "version": "v1", "updated": "2020-02-02T10:14:04.000Z" } ], "analyses": { "subjects": [ "14D20", "14C22", "14E05", "14J50" ], "keywords": [ "moduli space", "connections", "vector bundle", "compact riemann surface", "picard groups" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }