arXiv:2001.09810 [math.NT]AbstractReferencesReviewsResources
Generator of Pythagorean triples and Je$\acute{s}$manowicz conjecture
Published 2020-01-23Version 1
Let $a,b,c$ be relatively prime positive integers such that $a^2+b^2=c^2, 2|b$. In this paper, we show that Pythagorean triples $(a, b,c)$ must satisfy $abc\equiv{0\; (\mod3\cdot{4}\cdot{5}})$ and $c\neq{0\; (\mod{3}})$, and we also prove that for $(a,b,c)\in\{(a,b,c)|a\equiv{0\;(\mod{3}}),b\equiv{0\;(\mod{4}}),c\equiv{0\; (\mod{5}})\}\bigcup\{(a,b,c)|b\equiv{0\;(\mod{12}}),c\equiv{0\;(\mod{5}})\}$, the only solution of $$a^x+b^y=c^z\qquad{z},y,z\in{N}$$ in positive integers is $(x, y, z) = (2, 2,2)$.
Related articles: Most relevant | Search more
arXiv:1201.4418 [math.NT] (Published 2012-01-21)
Clifford Algebras and Euclid's Parameterization of Pythagorean Triples
The Group of Primitive Almost Pythagorean Triples
arXiv:1401.2869 [math.NT] (Published 2014-01-13)
A basis of the group of primitive almost pythagorean triples