{ "id": "2001.09810", "version": "v1", "published": "2020-01-23T06:04:18.000Z", "updated": "2020-01-23T06:04:18.000Z", "title": "Generator of Pythagorean triples and Je$\\acute{s}$manowicz conjecture", "authors": [ "Nainrong Feng" ], "categories": [ "math.NT" ], "abstract": "Let $a,b,c$ be relatively prime positive integers such that $a^2+b^2=c^2, 2|b$. In this paper, we show that Pythagorean triples $(a, b,c)$ must satisfy $abc\\equiv{0\\; (\\mod3\\cdot{4}\\cdot{5}})$ and $c\\neq{0\\; (\\mod{3}})$, and we also prove that for $(a,b,c)\\in\\{(a,b,c)|a\\equiv{0\\;(\\mod{3}}),b\\equiv{0\\;(\\mod{4}}),c\\equiv{0\\; (\\mod{5}})\\}\\bigcup\\{(a,b,c)|b\\equiv{0\\;(\\mod{12}}),c\\equiv{0\\;(\\mod{5}})\\}$, the only solution of $$a^x+b^y=c^z\\qquad{z},y,z\\in{N}$$ in positive integers is $(x, y, z) = (2, 2,2)$.", "revisions": [ { "version": "v1", "updated": "2020-01-23T06:04:18.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "pythagorean triples", "manowicz conjecture", "relatively prime positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }