arXiv:2001.06165 [math.FA]AbstractReferencesReviewsResources
On the stability of the Lions-Peetre method of real interpolation with functional parameter
Published 2020-01-17Version 1
Let $\vec{X}=(X_0, X_1)$ be a compatible couple of Banach spaces, $ 1\le p \le \infty$ and let $ \varphi$ be positive quasi-concave function. Denote by $\overline{X}_{\varphi,p}=(X_0,X_1)_{\varphi,p}$ the real interpolation spaces defined by S. Janson (1981). We give necessary and sufficient conditions on $ \varphi_{0}$, $\varphi_{1}$ and $\varphi$ for the validity of \begin{equation*} \left(\overline{X}_{\varphi_{0},1},\overline{X}_{\varphi_{1},1} \right) _{\varphi,p}= \left(\overline{X}_{\varphi_{0},\infty},\overline{X}_{\varphi_{1},\infty}\right)_{\varphi,p} \end{equation*} for all $ 1\le p\le \infty$, and all Banach couples $\overline{X}. $
Related articles: Most relevant | Search more
arXiv:math/9406215 [math.FA] (Published 1994-06-07)
The Uniform Classification of Banach Spaces
arXiv:math/9509216 [math.FA] (Published 1995-09-27)
Smooth functions and partitions of unity on certain Banach spaces
arXiv:math/0612606 [math.FA] (Published 2006-12-20)
Multipliers and Toeplitz operators on Banach spaces of sequences