{ "id": "2001.06165", "version": "v1", "published": "2020-01-17T06:38:06.000Z", "updated": "2020-01-17T06:38:06.000Z", "title": "On the stability of the Lions-Peetre method of real interpolation with functional parameter", "authors": [ "Amiran Gogatishvili" ], "categories": [ "math.FA", "math.AP", "math.CA" ], "abstract": "Let $\\vec{X}=(X_0, X_1)$ be a compatible couple of Banach spaces, $ 1\\le p \\le \\infty$ and let $ \\varphi$ be positive quasi-concave function. Denote by $\\overline{X}_{\\varphi,p}=(X_0,X_1)_{\\varphi,p}$ the real interpolation spaces defined by S. Janson (1981). We give necessary and sufficient conditions on $ \\varphi_{0}$, $\\varphi_{1}$ and $\\varphi$ for the validity of \\begin{equation*} \\left(\\overline{X}_{\\varphi_{0},1},\\overline{X}_{\\varphi_{1},1} \\right) _{\\varphi,p}= \\left(\\overline{X}_{\\varphi_{0},\\infty},\\overline{X}_{\\varphi_{1},\\infty}\\right)_{\\varphi,p} \\end{equation*} for all $ 1\\le p\\le \\infty$, and all Banach couples $\\overline{X}. $", "revisions": [ { "version": "v1", "updated": "2020-01-17T06:38:06.000Z" } ], "analyses": { "subjects": [ "46B70", "46M35", "46E30" ], "keywords": [ "lions-peetre method", "functional parameter", "real interpolation spaces", "banach spaces", "banach couples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }