arXiv:2001.04089 [math.RT]AbstractReferencesReviewsResources
Simple weight modules with finite-dimensional weight spaces over Witt superalgebras
Published 2020-01-13Version 1
Let $A_{m,n}$ be the tensor product of the Laurient polynomial algebra in $m$ even variables and the exterior algebra in $n$ odd variables over the complex field $\bC$, and the Witt superalgebra $W_{m,n}$ be the Lie superalgebra of superderivations of $A_{m,n}$. In this paper, we classify the simple weight $W_{m,n}$ modules with finite-dimensional weight spaces with respect to the standard Cartan algebra of $W_{m,0}$. Every such module is either a simple quotient of a tensor module or a module of highest weight type.
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:1304.5458 [math.RT] (Published 2013-04-19)
Classification of simple $W_n$-modules with finite-dimensional weight spaces
arXiv:1904.08578 [math.RT] (Published 2019-04-18)
Classification of simple weight modules for the $N=2$ superconformal algebra
arXiv:1309.1346 [math.RT] (Published 2013-09-05)
Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra