{ "id": "2001.04089", "version": "v1", "published": "2020-01-13T07:52:08.000Z", "updated": "2020-01-13T07:52:08.000Z", "title": "Simple weight modules with finite-dimensional weight spaces over Witt superalgebras", "authors": [ "Yaohui Xu", "Rencai Lü" ], "categories": [ "math.RT" ], "abstract": "Let $A_{m,n}$ be the tensor product of the Laurient polynomial algebra in $m$ even variables and the exterior algebra in $n$ odd variables over the complex field $\\bC$, and the Witt superalgebra $W_{m,n}$ be the Lie superalgebra of superderivations of $A_{m,n}$. In this paper, we classify the simple weight $W_{m,n}$ modules with finite-dimensional weight spaces with respect to the standard Cartan algebra of $W_{m,0}$. Every such module is either a simple quotient of a tensor module or a module of highest weight type.", "revisions": [ { "version": "v1", "updated": "2020-01-13T07:52:08.000Z" } ], "analyses": { "subjects": [ "17B10", "17B20", "17B65", "17B66", "17B68" ], "keywords": [ "finite-dimensional weight spaces", "simple weight modules", "witt superalgebra", "laurient polynomial algebra", "highest weight type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }