arXiv Analytics

Sign in

arXiv:1912.03402 [math.FA]AbstractReferencesReviewsResources

On linear chaos in function spaces

John M. Jimenez, Marat V. Markin

Published 2019-12-07Version 1

We show that, in $L_{p}(0,\infty)$ $(1\leq p <\infty)$, the bounded weighted backward shift operator $(Tx)(t)=wx(t+a)$ ($w>1$ and $a>0$) and its unbounded counterpart $(Tx)(t)=w^{t}x(t+a)$ are chaotic. We also extend the unbounded case to the space $C_{0}[0,\infty)$ and analyze the spectral structure of the above operators provided the corresponding spaces are complex.

Related articles: Most relevant | Search more
arXiv:1310.7351 [math.FA] (Published 2013-10-28)
Order isomorphisms on function spaces
arXiv:2301.10605 [math.FA] (Published 2023-01-25)
A note on Hausdorff-Young inequalities in function spaces
arXiv:math/0201161 [math.FA] (Published 2002-01-17)
Compactness Criteria in Function Spaces