{ "id": "1912.03402", "version": "v1", "published": "2019-12-07T00:54:47.000Z", "updated": "2019-12-07T00:54:47.000Z", "title": "On linear chaos in function spaces", "authors": [ "John M. Jimenez", "Marat V. Markin" ], "categories": [ "math.FA", "math.DS" ], "abstract": "We show that, in $L_{p}(0,\\infty)$ $(1\\leq p <\\infty)$, the bounded weighted backward shift operator $(Tx)(t)=wx(t+a)$ ($w>1$ and $a>0$) and its unbounded counterpart $(Tx)(t)=w^{t}x(t+a)$ are chaotic. We also extend the unbounded case to the space $C_{0}[0,\\infty)$ and analyze the spectral structure of the above operators provided the corresponding spaces are complex.", "revisions": [ { "version": "v1", "updated": "2019-12-07T00:54:47.000Z" } ], "analyses": { "subjects": [ "47A16", "47A10" ], "keywords": [ "function spaces", "linear chaos", "bounded weighted backward shift operator", "spectral structure", "unbounded counterpart" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }