arXiv:1912.01405 [math.NT]AbstractReferencesReviewsResources
On triple product L-functions
Published 2019-12-03Version 1
Let $\pi=\pi_1 \otimes \pi_2 \otimes \pi_3$ be a unitary cuspidal automorphic representation of $\mathrm{GL}_3^3(\mathbb{A}_F)$ where $F$ is a number field. Assume that $\pi$ is everywhere tempered. Under suitable local hypotheses, for a sufficiently large finite set of places $S$ of $F$ we prove that the triple product $L$-function $L^S(s,\pi,\otimes^3)$ admits a meromorphic continuation to $\mathrm{Re}(s) >\tfrac{3}{4}$. We also give some information about the possible poles.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1910.02821 [math.NT] (Published 2019-10-07)
Ratios of Artin L-functions
arXiv:1911.02342 [math.NT] (Published 2019-11-06)
On the meromorphic continuation of Eisenstein series
arXiv:2304.09171 [math.NT] (Published 2023-04-18)
Non-vanishing of twists of $\text{GL}_4(\mathbb{A}_{\mathbb{Q}})$ $L$-functions