{ "id": "1912.01405", "version": "v1", "published": "2019-12-03T14:29:36.000Z", "updated": "2019-12-03T14:29:36.000Z", "title": "On triple product L-functions", "authors": [ "Jayce R. Getz" ], "categories": [ "math.NT" ], "abstract": "Let $\\pi=\\pi_1 \\otimes \\pi_2 \\otimes \\pi_3$ be a unitary cuspidal automorphic representation of $\\mathrm{GL}_3^3(\\mathbb{A}_F)$ where $F$ is a number field. Assume that $\\pi$ is everywhere tempered. Under suitable local hypotheses, for a sufficiently large finite set of places $S$ of $F$ we prove that the triple product $L$-function $L^S(s,\\pi,\\otimes^3)$ admits a meromorphic continuation to $\\mathrm{Re}(s) >\\tfrac{3}{4}$. We also give some information about the possible poles.", "revisions": [ { "version": "v1", "updated": "2019-12-03T14:29:36.000Z" } ], "analyses": { "subjects": [ "11F66", "11F70" ], "keywords": [ "triple product l-functions", "unitary cuspidal automorphic representation", "sufficiently large finite set", "suitable local hypotheses", "meromorphic continuation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }