arXiv Analytics

Sign in

arXiv:1911.11198 [math.NT]AbstractReferencesReviewsResources

On the $2$-class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini

Published 2019-11-25Version 1

Let $d$ be an odd square-free integer, $m\geq 3$, $k$:$=\mathbb{Q}(\sqrt{d}, \sqrt{-1})$, $\mathbb{Q}(\sqrt{-2}, \sqrt{d})$ or $\mathbb{Q}(\sqrt{-2}, \sqrt{-d})$, and $L_{m,d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\mathbb{Q}(\zeta_{2^m},\sqrt{d})$, with $m\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\pmod 8$.

Related articles: Most relevant | Search more
arXiv:2001.00865 [math.NT] (Published 2020-01-03)
The rank of the 2-class group of some fields with large degree
arXiv:0807.1135 [math.NT] (Published 2008-07-07, updated 2021-11-18)
Cohomology of normic systems and fake Z_p extensions
arXiv:1606.06103 [math.NT] (Published 2016-06-20)
On $\ell$-torsion in class groups of number fields