{ "id": "1911.11198", "version": "v1", "published": "2019-11-25T20:03:26.000Z", "updated": "2019-11-25T20:03:26.000Z", "title": "On the $2$-class group of some number fields with large degree", "authors": [ "Mohamed Mahmoud Chems-Eddin", "Abdelmalek Azizi", "Abdelkader Zekhnini" ], "categories": [ "math.NT" ], "abstract": "Let $d$ be an odd square-free integer, $m\\geq 3$, $k$:$=\\mathbb{Q}(\\sqrt{d}, \\sqrt{-1})$, $\\mathbb{Q}(\\sqrt{-2}, \\sqrt{d})$ or $\\mathbb{Q}(\\sqrt{-2}, \\sqrt{-d})$, and $L_{m,d}:=\\mathbb{Q}(\\zeta_{2^m},\\sqrt{d})$. In this paper, we shall determine all the fields $L_{m, d}:=\\mathbb{Q}(\\zeta_{2^m},\\sqrt{d})$, with $m\\geq 3$ is an integer, such that the class number of $L_{m, d}$ is odd. Furthermore, using the cyclotomic $\\mathbb{Z}_2$-extensions of $k$, we compute the rank of the $2$-class group of $L_{m, d}$ whenever the divisors of $d$ are congruent $3$ or $5\\pmod 8$.", "revisions": [ { "version": "v1", "updated": "2019-11-25T20:03:26.000Z" } ], "analyses": { "keywords": [ "class group", "number fields", "large degree", "odd square-free integer", "class number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }