arXiv Analytics

Sign in

arXiv:1911.06563 [math.AP]AbstractReferencesReviewsResources

Some $L^1$-$L^1$ estimates for solutions to visco-elastic damped $σ$-evolution models

Tuan Anh Dao

Published 2019-11-15Version 1

This note is to conclude $L^1-L^1$ estimates for solutions to the following Cauchy problem for visco-elastic damped $\sigma$-evolution models: \begin{equation} \begin{cases} u_{tt}+ (-\Delta)^\sigma u+ (-\Delta)^\sigma u_t = 0, &\quad x\in \mathbb{R}^n,\, t \ge 0, \\ u(0,x)= u_0(x),\quad u_t(0,x)=u_1(x), &\quad x\in \mathbb{R}^n, \label{pt1.1} \end{cases} \end{equation} where $\sigma> 1$, in all space dimensions $n\ge 1$.

Comments: 10 pages
Categories: math.AP
Subjects: 35L30, 35R11
Related articles: Most relevant | Search more
arXiv:math/0607458 [math.AP] (Published 2006-07-19, updated 2008-01-12)
On well-posedness of the Cauchy problem for MHD system in Besov spaces
arXiv:math/0501408 [math.AP] (Published 2005-01-24, updated 2005-10-24)
The Cauchy problem for a Schroedinger - Korteweg - de Vries system with rough data
arXiv:math/0607456 [math.AP] (Published 2006-07-19, updated 2006-08-16)
Well-posedness of the Cauchy problem for the fractional power dissipative equations