arXiv Analytics

Sign in

arXiv:1911.04405 [math.AP]AbstractReferencesReviewsResources

Non-uniform dependence for Euler equations in Besov spaces

Jose Pastrana

Published 2019-11-11Version 1

We prove the non-uniform continuity of the data-to-solution map of the incompressible Euler equations in Besov spaces $B_{p,q}^{s}$, where the parameters $p, q$ and $s$ considered here are such that the local existence and uniqueness result holds.

Related articles: Most relevant | Search more
arXiv:1602.08811 [math.AP] (Published 2016-02-29)
On the boundedness of Pseudo-differential operators on Triebel-Lizorkin and Besov spaces
arXiv:1102.3614 [math.AP] (Published 2011-02-17)
Existence of Weak Solutions for the Incompressible Euler Equations
arXiv:1209.5964 [math.AP] (Published 2012-09-26)
h-Principles for the incompressible Euler equations