arXiv:1602.08811 [math.AP]AbstractReferencesReviewsResources
On the boundedness of Pseudo-differential operators on Triebel-Lizorkin and Besov spaces
Published 2016-02-29Version 1
In this work we study the boundedness of pseudo-differential operators corresponding to $a\in\mathcal{S}_{\rho,\delta}^{m}$, when $0\leq \delta\leq \rho<1$, on Triebel-Lizorkin spaces $F_p^{s,q}$ and Besov $B_p^{s,q}$ spaces. We also discuss the sharpness of our estimates in a certain sense and give an application.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1809.01806 [math.AP] (Published 2018-09-06)
Boundedness of pseudo-differential operators of type (0,0) on Triebel-Lizorkin and Besov spaces
arXiv:2105.12796 [math.AP] (Published 2021-05-26)
Regularity in Sobolev and Besov spaces for parabolic problems on domains of polyhedral type
arXiv:0808.3051 [math.AP] (Published 2008-08-22)
Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces