arXiv Analytics

Sign in

arXiv:1910.14483 [math.GN]AbstractReferencesReviewsResources

On first countable, cellular-compact spaces

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy

Published 2019-10-31Version 1

A topological space $X$ is cellular-compact if given any cellular family $\mathcal U$ of open subsets of $X$ there is a compact subspace $K\subset X$ such that $K\cap U\ne \emptyset$ for each $U\in \mathcal U$. Answering two questions of Tkachuk and Wilson we show that (1) if $X$ is a first countable cellular-compact $T_2$ space, then $|X|\le 2^{\omega}$, (2) if $cov(\mathcal M)>{\omega}_1$, then every first countable separable $\pi$-regular cellular-compact space is compact.

Related articles: Most relevant | Search more
arXiv:1503.04480 [math.GN] (Published 2015-03-15)
Verbal covering properties of topological spaces
arXiv:2102.09908 [math.GN] (Published 2021-02-19)
On the structure of topological spaces
arXiv:2305.03166 [math.GN] (Published 2023-05-04)
C-open Sets on Topological Spaces