{ "id": "1910.14483", "version": "v1", "published": "2019-10-31T14:20:29.000Z", "updated": "2019-10-31T14:20:29.000Z", "title": "On first countable, cellular-compact spaces", "authors": [ "István Juhász", "Lajos Soukup", "Zoltán Szentmiklóssy" ], "categories": [ "math.GN" ], "abstract": "A topological space $X$ is cellular-compact if given any cellular family $\\mathcal U$ of open subsets of $X$ there is a compact subspace $K\\subset X$ such that $K\\cap U\\ne \\emptyset$ for each $U\\in \\mathcal U$. Answering two questions of Tkachuk and Wilson we show that (1) if $X$ is a first countable cellular-compact $T_2$ space, then $|X|\\le 2^{\\omega}$, (2) if $cov(\\mathcal M)>{\\omega}_1$, then every first countable separable $\\pi$-regular cellular-compact space is compact.", "revisions": [ { "version": "v1", "updated": "2019-10-31T14:20:29.000Z" } ], "analyses": { "subjects": [ "54D20", "54D99", "54D55" ], "keywords": [ "regular cellular-compact space", "compact subspace", "open subsets", "first countable cellular-compact", "topological space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }