arXiv Analytics

Sign in

arXiv:1910.11290 [math.DS]AbstractReferencesReviewsResources

Post-Critically Finite Maps on $\mathbb{P}^n$ for $n\ge2$ are Sparse

Patrick Ingram, Rohini Ramadas, Joseph H. Silverman

Published 2019-10-24Version 1

Let $f:{\mathbb P}^n\to{\mathbb P}^n$ be a morphism of degree $d\ge2$. The map $f$ is said to be post-critically finite (PCF) if there exist integers $k\ge1$ and $\ell\ge0$ such that the critical locus $\operatorname{Crit}_f$ satisfies $f^{k+\ell}(\operatorname{Crit}_f)\subseteq{f^\ell(\operatorname{Crit}_f)}$. The smallest such $\ell$ is called the tail-length. We prove that for $d\ge3$ and $n\ge2$, the set of PCF maps $f$ with tail-length at most $2$ is not Zariski dense in the the parameter space of all such maps. In particular, maps with periodic critical loci, i.e., with $\ell=0$, are not Zariski dense.

Related articles: Most relevant | Search more
arXiv:2205.04994 [math.DS] (Published 2022-05-10)
Relations between Escape Regions in the Parameter Space of Cubic Polynomials
arXiv:1111.3989 [math.DS] (Published 2011-11-16, updated 2012-02-07)
Bifurcation currents and equidistribution on parameter space
arXiv:math/0605687 [math.DS] (Published 2006-05-26)
Cubic polynomials: a measurable view on parameter space