{ "id": "1910.11290", "version": "v1", "published": "2019-10-24T17:06:35.000Z", "updated": "2019-10-24T17:06:35.000Z", "title": "Post-Critically Finite Maps on $\\mathbb{P}^n$ for $n\\ge2$ are Sparse", "authors": [ "Patrick Ingram", "Rohini Ramadas", "Joseph H. Silverman" ], "comment": "32 pages", "categories": [ "math.DS", "math.AG" ], "abstract": "Let $f:{\\mathbb P}^n\\to{\\mathbb P}^n$ be a morphism of degree $d\\ge2$. The map $f$ is said to be post-critically finite (PCF) if there exist integers $k\\ge1$ and $\\ell\\ge0$ such that the critical locus $\\operatorname{Crit}_f$ satisfies $f^{k+\\ell}(\\operatorname{Crit}_f)\\subseteq{f^\\ell(\\operatorname{Crit}_f)}$. The smallest such $\\ell$ is called the tail-length. We prove that for $d\\ge3$ and $n\\ge2$, the set of PCF maps $f$ with tail-length at most $2$ is not Zariski dense in the the parameter space of all such maps. In particular, maps with periodic critical loci, i.e., with $\\ell=0$, are not Zariski dense.", "revisions": [ { "version": "v1", "updated": "2019-10-24T17:06:35.000Z" } ], "analyses": { "subjects": [ "37P05", "37F10", "37F45", "37P45" ], "keywords": [ "post-critically finite maps", "zariski dense", "critical locus", "parameter space", "periodic critical loci" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }