arXiv Analytics

Sign in

arXiv:1910.10028 [math.DG]AbstractReferencesReviewsResources

Symmetric affine surfaces with torsion

Daniela D'Ascanio, Peter Gilkey, Pablo Pisani

Published 2019-10-22Version 1

We study symmetric affine surfaces which have non-vanishing torsion tensor. We give a complete classification of the local geometries possible if the torsion is assumed parallel. This generalizes a previous result of Opozda in the torsion free setting; these geometries are all locally homogeneous. If the torsion is not parallel, we assume the underlying surface is locally homogeneous and provide a complete classification in this setting as well.

Related articles: Most relevant | Search more
arXiv:math/0011034 [math.DG] (Published 2000-11-05, updated 2003-03-05)
A cornucopia of isospectral pairs of metrics on spheres with different local geometries
arXiv:1704.08924 [math.DG] (Published 2017-04-20)
Complete classification of surfaces with a canonical principal direction in the Minkowski 3-space
arXiv:1604.03156 [math.DG] (Published 2016-04-11)
Regular ambitoric $4$-manifolds: from Riemannian Kerr to a complete classification