{ "id": "1910.10028", "version": "v1", "published": "2019-10-22T15:04:21.000Z", "updated": "2019-10-22T15:04:21.000Z", "title": "Symmetric affine surfaces with torsion", "authors": [ "Daniela D'Ascanio", "Peter Gilkey", "Pablo Pisani" ], "categories": [ "math.DG", "gr-qc" ], "abstract": "We study symmetric affine surfaces which have non-vanishing torsion tensor. We give a complete classification of the local geometries possible if the torsion is assumed parallel. This generalizes a previous result of Opozda in the torsion free setting; these geometries are all locally homogeneous. If the torsion is not parallel, we assume the underlying surface is locally homogeneous and provide a complete classification in this setting as well.", "revisions": [ { "version": "v1", "updated": "2019-10-22T15:04:21.000Z" } ], "analyses": { "keywords": [ "complete classification", "study symmetric affine surfaces", "torsion free", "non-vanishing torsion tensor", "local geometries" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }