arXiv Analytics

Sign in

arXiv:1910.09944 [math.FA]AbstractReferencesReviewsResources

The nuclearity of Gelfand-Shilov spaces and kernel theorems

Andreas Debrouwere, Lenny Neyt, Jasson Vindas

Published 2019-10-22Version 1

We study the nuclearity of the Gelfand-Shilov spaces $\mathcal{S}^{(\mathfrak{M})}_{(\mathscr{W})}$ and $\mathcal{S}^{\{\mathfrak{M}\}}_{\{\mathscr{W}\}}$, defined via a weight (multi-)sequence system $\mathfrak{M}$ and a weight function system $\mathscr{W}$. We obtain characterizations of nuclearity for these function spaces that are counterparts of those for K\"{o}the sequence spaces. As an application, we prove new kernel theorems. Our general framework allows for a unified treatment of the Gelfand-Shilov spaces $\mathcal{S}^{(M)}_{(A)}$ and $\mathcal{S}^{\{M\}}_{\{A\}}$ (defined via weight sequences $M$ and $A$) and the Beurling-Bj\"orck spaces $\mathcal{S}^{(\omega)}_{(\eta)}$ and $\mathcal{S}^{\{\omega\}}_{\{\eta\}}$ (defined via weight functions $\omega$ and $\eta$). Our results cover anisotropic cases as well.

Related articles: Most relevant | Search more
arXiv:2407.06126 [math.FA] (Published 2024-07-08)
On the inclusion relations between Gelfand-Shilov spaces
arXiv:2203.16696 [math.FA] (Published 2022-03-30)
Kernel theorems for Beurling-Björck type spaces
arXiv:1809.06457 [math.FA] (Published 2018-09-17)
On the nuclearity of spaces of weighted smooth functions